Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Eur J Pharmacol ; 938: 175392, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2245545

ABSTRACT

Oxidative stress by reactive oxygen species (ROS) has been hypothesized to be the major mediator of SARS-CoV-2-induced pathogenesis. During infection, the redox homeostasis of cells is altered as a consequence of virus-induced cellular stress and inflammation. In such scenario, high levels of ROS bring about the production of pro-inflammatory molecules like IL-6, IL-1ß, etc. that are believed to be the mediators of severe COVID-19 pathology. Based on the known antioxidant, anti-inflammatory, mucolytic and antiviral properties of NAC, it has been hypothesized that NAC will have beneficial effects in COVID-19 patients. In the current study efforts have been made to evaluate the protective effect of NAC in combination with remdesivir against SARS-CoV-2 induced lung damage in the hamster model. The SARS-CoV-2 infected animals were administered with high (500 mg/kg/day) and low (150 mg/kg/day) doses of NAC intraperitoneally with and without remdesivir. Lung viral load, pathology score and expression of inflammatory molecules were checked by using standard techniques. The findings of this study show that high doses of NAC alone can significantly suppress the SARS-CoV-2 mediated severe lung damage (2 fold), but on the contrary, it fails to restrict viral load. Moreover, high doses of NAC with and without remdesivir significantly suppressed the expression of pro-inflammatory genes including IL-6 (4.16 fold), IL-1ß (1.96 fold), and TNF-α (5.55 fold) in lung tissues. Together, results of this study may guide future preclinical and clinical attempts to evaluate the efficacy of different doses and routes of NAC administration with or without other drugs against SARS-CoV-2 infection.

2.
Front Microbiol ; 13: 856913, 2022.
Article in English | MEDLINE | ID: covidwho-2032801

ABSTRACT

The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts, and rapid emergence of new variants urge for the establishment of research infrastructure to facilitate the rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, SARS-CoV-2 strains were isolated from patient swab samples collected during the first COVID-19 wave in Odisha, India. The viral isolates were adapted to in vitro cultures and further characterized to identify strain-specific variations in viral growth characteristics. The neutralization susceptibility of viral isolates to vaccine-induced antibodies was determined using sera from individuals vaccinated in the Government-run vaccine drive in India. The major goal was to isolate and adapt SARS-CoV-2 viruses in cell culture with minimum modifications to facilitate research activities involved in the understanding of the molecular virology, host-virus interactions, drug discovery, and animal challenge models that eventually contribute toward the development of reliable therapeutics.

3.
Front Immunol ; 12: 733539, 2021.
Article in English | MEDLINE | ID: covidwho-1572288

ABSTRACT

The response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely impacted by the level of virus exposure and status of the host immunity. The nature of protection shown by direct asymptomatic contacts of coronavirus disease 2019 (COVID-19)-positive patients is quite intriguing. In this study, we have characterized the antibody titer, SARS-CoV-2 surrogate virus neutralization, cytokine levels, single-cell T-cell receptor (TCR), and B-cell receptor (BCR) profiling in asymptomatic direct contacts, infected cases, and controls. We observed significant increase in antibodies with neutralizing amplitude in asymptomatic contacts along with cytokines such as Eotaxin, granulocyte-colony stimulating factor (G-CSF), interleukin 7 (IL-7), migration inhibitory factor (MIF), and macrophage inflammatory protein-1α (MIP-1α). Upon single-cell RNA (scRNA) sequencing, we explored the dynamics of the adaptive immune response in few representative asymptomatic close contacts and COVID-19-infected patients. We reported direct asymptomatic contacts to have decreased CD4+ naive T cells with concomitant increase in CD4+ memory and CD8+ Temra cells along with expanded clonotypes compared to infected patients. Noticeable proportions of class switched memory B cells were also observed in them. Overall, these findings gave an insight into the nature of protection in asymptomatic contacts.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Genomics/methods , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/genetics , Adult , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Female , Gene Expression Profiling/methods , Humans , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Memory B Cells/virology , Middle Aged , SARS-CoV-2/physiology , Sequence Analysis, RNA/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Young Adult
4.
Front Microbiol ; 12: 673509, 2021.
Article in English | MEDLINE | ID: covidwho-1400679

ABSTRACT

Viruses are obligate parasites that depend on the host cell machinery for their replication and dissemination. Cellular lipids play a central role in multiple stages of the viral life cycle such as entry, replication, morphogenesis, and egress. Most viruses reorganize the host cell membranes for the establishment of viral replication complex. These specialized structures allow the segregation of replicating viral RNA from ribosomes and protect it from host nucleases. They also facilitate localized enrichment of cellular components required for viral replication and assembly. The specific composition of the lipid membrane governs its ability to form negative or positive curvature and possess a rigid or flexible form, which is crucial for membrane rearrangement and establishment of viral replication complexes. In this review, we highlight how different viruses manipulate host lipid transfer proteins and harness their functions to enrich different membrane compartments with specific lipids in order to facilitate multiple aspects of the viral life cycle.

5.
FASEB J ; 35(7): e21713, 2021 07.
Article in English | MEDLINE | ID: covidwho-1262245

ABSTRACT

Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests lung pathology. In this study, efforts were made to check the infectivity of a local SARS-CoV-2 isolate in a self-limiting and non-lethal hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo. Analysis of clinical parameters and tissue samples show the pathophysiological manifestation of SARS-CoV-2 infection similar to that reported earlier in COVID-19 patients and hamsters infected with other isolates. However, diffuse alveolar damage (DAD), a common histopathological feature of human COVID-19 was only occasionally noticed. The lung-associated pathological changes were very prominent on the 4th day post-infection (dpi), mostly resolved by 14 dpi. Here, we carried out the quantitative proteomic analysis of the lung tissues from SARS-CoV-2-infected hamsters on day 4 and day 14 post-infection. This resulted in the identification of 1585 proteins of which 68 proteins were significantly altered between both the infected groups. Pathway analysis revealed complement and coagulation cascade, platelet activation, ferroptosis, and focal adhesion as the top enriched pathways. In addition, we also identified altered expression of two pulmonary surfactant-associated proteins (Sftpd and Sftpb), known for their protective role in lung function. Together, these findings will aid in understanding the mechanism(s) involved in SARS-CoV-2 pathogenesis and progression of the disease.


Subject(s)
COVID-19/metabolism , COVID-19/pathology , Host-Pathogen Interactions , Lung/metabolism , Lung/virology , Proteomics , SARS-CoV-2/pathogenicity , Animals , COVID-19/virology , Cricetinae , Disease Models, Animal , Female , Lung/pathology , Male , Proteome/analysis , Proteome/biosynthesis , Reproducibility of Results , Viral Load
6.
Front Microbiol ; 11: 594928, 2020.
Article in English | MEDLINE | ID: covidwho-972819

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has emerged as a global pandemic worldwide. In this study, we used ARTIC primers-based amplicon sequencing to profile 225 SARS-CoV-2 genomes from India. Phylogenetic analysis of 202 high-quality assemblies identified the presence of all the five reported clades 19A, 19B, 20A, 20B, and 20C in the population. The analyses revealed Europe and Southeast Asia as two major routes for introduction of the disease in India followed by local transmission. Interestingly, the19B clade was found to be more prevalent in our sequenced genomes (17%) compared to other genomes reported so far from India. Haplotype network analysis showed evolution of 19A and 19B clades in parallel from predominantly Gujarat state in India, suggesting it to be one of the major routes of disease transmission in India during the months of March and April, whereas 20B and 20C appeared to evolve from 20A. At the same time, 20A and 20B clades depicted prevalence of four common mutations 241 C > T in 5' UTR, P4715L, F942F along with D614G in the Spike protein. D614G mutation has been reported to increase virus shedding and infectivity. Our molecular modeling and docking analysis identified that D614G mutation resulted in enhanced affinity of Spike S1-S2 hinge region with TMPRSS2 protease, possibly the reason for increased shedding of S1 domain in G614 as compared to D614. Moreover, we also observed an increased concordance of G614 mutation with the viral load, as evident from decreased Ct value of Spike and the ORF1ab gene.

7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.23.217430

ABSTRACT

COVID-19 that emerged as a global pandemic is caused by SARS-CoV-2 virus. The virus genome analysis during disease spread reveals about its evolution and transmission. We did whole genome sequencing of 225 clinical strains from the state of Odisha in eastern India using ARTIC protocol-based amplicon sequencing. Phylogenetic analysis identified the presence of all five reported clades 19A, 19B, 20A, 20B and 20C in the population. The analyses revealed two major routes for the introduction of the disease in India i.e. Europe and South-east Asia followed by local transmission. Interestingly, 19B clade was found to be much more prevalent in our sequenced genomes (17%) as compared to other genomes reported so far from India. The haplogroup analysis for clades showed evolution of 19A and 19B in parallel whereas the 20B and 20C appeared to evolve from 20A. Majority of the 19A and 19B clades were present in cases that migrated from Gujarat state in India suggesting it to be one of the major initial points of disease transmission in India during month of March and April. We found that with the time 20A and 20B clades evolved drastically that originated from central Europe. At the same time, it has been observed that 20A and 20B clades depicted selection of four common mutations i.e. 241 C>T (5UTR), P323L in RdRP, F942F in NSP3 and D614G in the spike protein. We found an increase in the concordance of G614 mutation evolution with the viral load in clinical samples as evident from decreased Ct value of spike and Orf1ab gene in qPCR. Molecular modelling and docking analysis identified that D614G mutation enhanced interaction of spike with TMPRSS2 protease, which could impact the shedding of S1 domain and infectivity of the virus in host cells.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL